
Name:

Discussion Section:

Solutions should show all of your work, not just a single final answer.

2.1: The Tangent and Velocity Problems

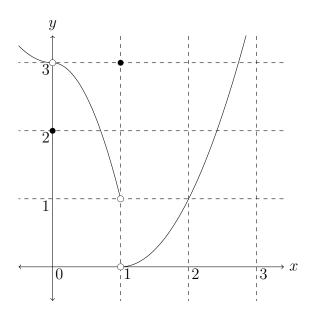
1. The point $P=(1/4,1/\sqrt{2})$ lies on the curve $y=\cos(\pi x)$ where x is in **radians**, as shown below.

- (a) If $Q = (x, \cos(\pi x))$ then use your calculator to find the slope of the secant line PQ, rounded to four digits after the decimal point, for the following values of x:
 - (i) 0.24,

(iv) 0.26,

(ii) 0.249,

(v) 0.251,


(iii) 0.2499,

- (vi) 0.2501.
- (b) Using the results of part(a), estimate the value of the slope of the tangent line to the curve at $(1/4, 1/\sqrt{2})$ to three digits after the decimal point.

- (c) Using the estimated slope from part(b), what is an estimate for the equation of the tangent line to the graph of $y = \cos(\pi x)$ at $(1/4, 1/\sqrt{2})$? Write the final answer in the form y = mx + b where m and b are each rounded to three digits after the decimal point.
- 2. The displacement of an object on a line, in meters, is $s = 1 + 2t + \frac{1}{4}t^2$, where t is in seconds.
 - (a) Find the average velocity in m/sec over each of the following time periods. For parts (i) through (v), round your answer to three digits after the decimal point. In part (vi), h is a nonzero variable and the final answer is in terms of h.
 - (i) [1, 1.5]
 - (ii) [1, 1.1]
 - (iii) [1, 1.01]
 - (iv) [1, .9]
 - (v) [1, .99]
 - (vi) [1, 1+h]
 - (b) Use the work in part a to estimate the instantaneous velocity of the object at time t=1, in m/sec.

2.2: The Limit of a Function

3. The graph of y = f(x) is below. Use it to compute each limit or explain why it doesn't exist.

(a)
$$\lim_{x \to 0^-} f(x)$$

(b)
$$\lim_{x \to 1^-} f(x)$$

(c)
$$\lim_{x \to 2^{-}} f(x)$$

(d)
$$\lim_{x \to 0^+} f(x)$$

(e)
$$\lim_{x \to 1^+} f(x)$$

$$(f) \lim_{x \to 2+} f(x)$$

(g)
$$\lim_{x\to 0} f(x)$$

(h)
$$\lim_{x \to 1} f(x)$$

(i)
$$\lim_{x \to 2} f(x)$$

(j)
$$f(0)$$

(k)
$$f(1)$$

(1)
$$f(2)$$

4. Determine whether the following limits are finite, ∞ , or $-\infty$. If the limit does not exist for any other reason, write DNE with a justification.

(a)
$$\lim_{x \to 1} \frac{\sqrt{x}}{2(x-1)^2}$$

(b)
$$\lim_{x \to 1+} \frac{x-2}{x-1}$$

(c)
$$\lim_{x \to 0} \frac{1}{x} - \frac{1}{x^2}$$

5. T/F (with justification) The line x=1 is a vertical asymptote of the graph of $y=\frac{x^2-1}{x^2-2x+1}$.

6. T/F (with justification) The line x=1 is a vertical asymptote of the graph of $y=\frac{x^2-2x+1}{x^2-1}$.

2.3: Calculating Limits Using the Limit Laws

7. Let

$$f(x) = \begin{cases} x^2 + 1 & \text{if } x < 1, \\ 4 & \text{if } x = 1, \\ x + 2 & \text{if } 1 < x \le 2, \\ 6 - x & \text{if } x > 2. \end{cases}$$

(a) Sketch the graph of y = f(x) for $-1 \le x \le 4$.

(b) Evaluate the following limits if they exist. (If a limit does not exist, write DNE.)

(i)
$$\lim_{x \to 1^-} f(x)$$

(iv)
$$\lim_{x \to 2^-} f(x)$$

(ii)
$$\lim_{x \to 1^+} f(x)$$

$$(v) \lim_{x \to 2^+} f(x)$$

(iii)
$$\lim_{x \to 1} f(x)$$

(vi)
$$\lim_{x\to 2} f(x)$$

8. Evaluate the following limits exactly using algebra and limit laws (some limits may be ${\rm DNE}$).

(a)
$$\lim_{x \to 2} \frac{x^3 - 2}{2x^2 - 3x + 2}$$

(b)
$$\lim_{x \to 9} \frac{x - 9}{\sqrt{x} - 3}$$

(c)
$$\lim_{x \to 3} \frac{\sqrt{x^2 + 40} - 7}{x - 3}$$

(d)
$$\lim_{x \to -2} \sqrt{x^4 + 3x + 6}$$

(e)
$$\lim_{x \to 1} \frac{x^2 + 4x}{x^2 + 3x - 4}$$

(f)
$$\lim_{x \to 1} \frac{(x^2 + x)^2 - 4}{x^2 + x - 2}$$

9. Evaluate the following limits using algebra and limit laws (some limits may be DNE). Note that a represents a constant, and answers may be in terms of a.

(a)
$$\lim_{t\to 0} \frac{\sqrt{a+t} - \sqrt{a-t}}{t}$$
 for $a>0$

(b)
$$\lim_{h\to 0} \frac{1/(a+h)^2 - 1/a^2}{h}$$
 for $a \neq 0$

10. T/F (with justification) If $\lim_{x\to 2} g(x) = 0$ and $\lim_{x\to 2} h(x) = 0$ then $\lim_{x\to 2} \frac{g(x)}{h(x)}$ does not exist.